Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds.
نویسندگان
چکیده
Highly crystalline feedstock hydroxyapatite (HA) particles with irregular shapes were spheroidized by plasma spraying them onto the surface of ice blocks or into water. The spherical Ca-P particles thus produced contained various amounts of the amorphous phase which were controlled by the stand-off distance between the spray nozzle and the surface of ice blocks or waiter. The smooth surface morphology without cracks of spherical Ca-P particles indicated that there were very low thermal stresses in these particles. Plasma-sprayed Ca-P particles were highly bioactive due to their amorphous component and hence quickly induced the formation of bone-like apatite on their surfaces after they were immersed in an acellular simulated body fluid at 36.5 C. Bone-like apatite nucleated on dissolved surface (due to the amorphous phase) of individual Ca-P particles and grew to coalesce between neighboring Ca-P particles thus forming an integrated apatite plate. Bioactive and biodegradable composite scaffolds were produced by incorporating plasma-spray ed Ca-P particles into a degradable polymer. In vitro experiments showed that plasma-sprayed Ca-P particles enhanced the formation of bone-like apatite on the pore surface of Ca-P/PLLA composite scaffolds.
منابع مشابه
Strong and Bioactive Tri-calcium Phosphate Scaffolds with Tube-like Macropores
Calcium phosphate ceramic scaffolds have been widely investigated for bone tissue engineering due to their excellent biocompatibility and biodegradation. Unfortunately, they have the shortcoming of low mechanical properties. In order to provide strong, bioactive, and biodegradable scaffolds, a new approach of infiltrating the macro-tube ABS (acrylontrile butadiene styrene) templates with a hydr...
متن کاملEnhancing the bioactivity of a calcium phosphate glass-ceramic with controlled heat treatment
In this paper synthesis and characterization of a bioactive calcium phosphate glass-ceramic is presented, synthesized using a facile method. The glass-ceramic samples are synthesized with heat treating the parent glass at appropriate temperatures, where different calcium phosphate crystalline phases are grown in the parent glass samples during the heat treatment. The amounts of elements a...
متن کاملIn vitro evaluation of apatite/wollastonite glass–ceramic nano biocoatings on 316 alloys by plasma-sprayed
Among bioactive ceramics, the apatite/wollastonite (A/W) glass ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopedics and dentistry. However, medical applications of bioceramic are limited to non-load bearing applications because of their poor mechanical prope...
متن کاملBioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications.
AIM The development of novel silk/nano-sized calcium phosphate (silk/nano-CaP) scaffolds with highly dispersed CaP nanoparticles in the silk fibroin (SF) matrix for bone tissue engineering. MATERIALS & METHODS Nano-CaP was incorporated in a concentrated aqueous SF solution (16 wt.%) by using an in situ synthesis method. The silk/nano-CaP scaffolds were then prepared through a combination of s...
متن کاملStrontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate
Porous bioactive glasses are attractive for use as bone scaffolds. There is increasing interest in strontium containing bone grafts, since strontium ions are known to up-regulate osteoblasts and down regulate osteoclasts. This paper investigates the influence of partial to full substitution of strontium for calcium on the dissolution and phase formation of a multicomponent high phosphate conten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2002